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Abstract—Kink band formation in uniaxially compressed fiber composites is studied theoretically.
A model is proposed which involves the bowing of a bundle of slightly misaligned fibers (via micro-
buckling) until fiber fracture, followed by a finite deformation which brings the fibers into the
kinked configuration. These two critical steps in the process are treated separately in this two-part
paper. In Part I, the critical strain at which the fibers can break is calculated ; in Part II the critical
strain at which a fully formed kink band can exist is calculated. It is found that the critical strain
to form the fiber breaks is comparable to observed compressive failure strains and is, in general,
greater than the strain at which a fully formed kink band can exist. This appears to imply that the
formation of the fiber breaks is the limiting step in kinking. The theory is consistent with the seminal
features of kinking, including: the fiber breaks at the kink band boundary, the relatively small
width of the kinks, and the typical orientation relation between the kinked fibers and the kink band
boundary. Computations based on the model reveal the dependence of kinking on pertinent material
variables.

INTRODUCTION AND BACKGROUND

There are a variety of reasons for fiber-reinforced composites to be weak when compressed
parallel to the fibers. In some cases, for example in polymeric-based fibers, the fibers
themselves are relatively weak in compression. In other cases, there is insufficient constraint
to prevent longitudinal splitting, in which a crack runs parallel to the fibers in the com-
pression direction. Of course, structural buckling can be a problem for slender members.
For advanced composites that are intended to withstand substantial compressive loads,
however, the typical mode of failure is fiber kinking. In a unidirectional composite, kinking
generally involves bands of material that have undergone intense shearing, and in which
the fibers are re-oriented—up to 60° or more—from their original direction. Since this
failure mechanism can be a limiting one for some composite systems, it is of interest to
increase the fundamental understanding of this failure mechanism with the hope of designing
materials with greater resistance to kinking. In this two-part sequence of papers, a theoretical
model for the formation of kink bands is proposed. Efforts by a number of investigators
have been directed towards studying compressive failure; not surprisingly, the proposed
theory is, in part, a reorganization of previous models. Much of the theory, however,
involves substantially new approaches.

Early on, compressive failures of this type were viewed as coinciding with fiber micro-
buckling. Responding to the suggestion of Dow and Gruntfest (1960) that individual fibers
buckle under longitudinal compression, Rosen (1965) put forth the first—and still most
quoted—model for compressive failure. He idealized a buckling fiber as a beam on an
elastic foundation, the foundation simulating the effect of the matrix and the surrounding
fibers on the fiber in question. The buckling load, which he took to signal compressive
failure, was found to be on the order of the elastic shear modulus of the matrix. Unfor-
tunately, this is significantly in excess of observed compressive strengths, and no refinement
(e.g. Sadowsky et al., 1967; Herrmann er al., 1967; Chung and Testa, 1969 ; Greszczuk,
1975 ; Steif, 1987 ; Waas et al., 1989) of Rosen’s (1965) elastic micro-buckling analysis has
significantly lowered his prediction of compressive strength.

Rosen himself immediately recognized that the strength was overestimated by his theory,
and he suggested that plasticity in the matrix reduces the shearing resistance and could,
therefore, account for the discrepancy. Given the strains at which compressive failure
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occurs, however, no reduction in the shearing resistance can be expected if one continues
to insist that the fibers begin as perfectly straight. However. the combined effect of fiber
misalignment and yielding of the matrix was suggested by Argon (1972) to reduce pre-
dictions of compressive strength to more acceptable values. Elaborating upon this idea
somewhat, Budiansky (1983) has argued that the resistance of fibers to micro-buckling in
a plastic matrix is highly sensitive to fiber misalignment. Both Budiansky (1983) and Hahn
(1987) have attempted to make a connection between micro-buckling (with imperfections
and matrix plasticity) and the formation of kink bands. An alternative explanation for
observed compressive strengths involving the failure of the fiber-matrix interface under
shear—which can occur in the presence of misaligned fibers if the interface is weak—was
suggested by Piggott (1981). Steif (1988) has recently considered the effect of a weak
interface (which for most models of a micro-buckling fiber is essentially equivalent to matrix
plasticity), and he has explored micro-buckling by studying the linear amplification of an
initial imperfection. In most of the early studies, the wavelength of the micro-buckling fiber
(which, we argue below, determines the kink width) was tacitly assumed to be equal to the
specimen length. By contrast, the theoretical approaches of Budiansky (1983) and Hahn
(1988) predict kink band widths which are roughly on the order of observed widths.

These efforts, in particular the micro-buckling analyses, have been less than adequate
in that they have not come to grips with the seminal features of kinking in fibrous composites.
The detailed observations of kinking in three-dimensional carbon-carbon composites by
Evans and Adler (1978), as well as the observations of compressively loaded unidirectional
carbon—epoxy composites under confining pressure by Weaver and Williams (1975), point
out the following : (i) kinking involves fiber fracture at the kink boundaries ; (ii) kink widths
are much smaller than the specimen length ; and (iii) there exist relatively consistent relations
between the kink angle and the kink band boundary.

Based on a careful consideration of observations of kinking, we offer the following
sketch of the process whereby a kink band forms under longitudinal compression. In the
fabrication of real composites, the fibers will not be perfectly aligned ; most likely a bundle
of fibers within the composite will be misaligned, as depicted in Fig. la. Under a compressive
load parallel to the fibers, the fibers bend accentuating this misalignment (Fig. 1b). Under
sufficient compression, the fibers break and the kink forms as shown in Fig. lc. Within this
framework, the width of the kink band is determined by the wavelength of the imperfection
which causes micro-buckling. It should be pointed out that although our analysis is predi-
cated upon the kink initiating from a misaligned bundle, kink bands often initiate from free
edges or from cutouts. The elements of the model as currently formulated would presumably
have their counterparts in cases of other initiating imperfections.

We believe it is appropriate to view the whole process of kinking as having two essential
steps. First, the fibers break at the necessary points due to micro-buckling of the fibers.
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Fig. 1. Schematic of the sequence of events in the process of kinking.



A model for kinking in fiber composites—I 551

Secondly, the material between the breaks deforms as a kink. In'connection with the micro-
buckling step, it should be pointed out that previous approaches to micro-buckling share
the drawback of focusing on the initiation of buckling. Yet the fiber needs to do more than
just buckle, it needs to bend sufficiently far to cause fracture of the fibers. This idea of
tensile fracture of the fibers in bending, which was originally suggested by Berg and Salama
(1973), may be an important element in a proper theory of compressive failure. To date.
this notion of achieving a critical tensile strain in bending has not been combined with an
analysis of the buckling of fibers under compression. Also, there has been relatively little
modeling of the process of kink band development (with the exception of Evans and Adler.
1978 ; Budiansky, 1983 ; Hahn, 1987) ; in particular, a computation of the applied load to
induce kinking has not been carried out.

A model for compressive failure by kinking is reported here as a two-part paper, each
part focusing on a crucial aspect of the kinking process. Part I deals with the initiation of
the fiber breaks via micro-buckling. Part II is concerned with the formation of a complete
kink band. These aspects will be treated separately, except that the computations for the
kink band will presume the existence of the necessary fiber breaks. The critical strains for
each of these processes—fiber breaks via micro-buckling and kinking with pre-existing
breaks—will be calculated and compared. The process which has the higher critical strain
will be the limiting step in that it will determine the load at which kinking actually occurs.

The calculation of the remote compressive strain at which initially unstraight fibers
fail in tension due to bending is based on an extension of a previous model (Steif, 1988). A
fiber initially having a slight waviness is permitted to undergo finite deflections (but infini-
tesimal strains), under the action of a longitudinal compressive load and resistance provided
by the matrix, surrounding fibers and interface. Allowing finite deflections is essential to an
accurate implementation of the critical bending strain criterion, though properly accounting
for them requires a nonlinear analysis. Nevertheless, it is relatively straightforward to
solve the relevant elastica problem numerically. Results of the numerical solutions will be
compared with experiments; in addition, they allow the dependence of the fiber breaking
strain on a range of pertinent material variables to be explored.

ANALYSIS

Obviously, an analysis of the simultaneous deformations of many fibers in a composite
subjected to compression is prohibitive. The task is simplified somewhat if one is able to
argue that the deformations of different fibers form some pattern. For example, Rosen
(1965), in his early work, proposed two distinct micro-buckling modes : a shear mode (fibers
deforming in-phase with one another) and an extensional mode (fibers deforming out-of-
phase with one another). While it is unlikely that an entire specimen goes into any single
mode, micrographs of kink band formation (and our summarizing Fig. 1) suggest that the
bundle in which the kink initiates does, in fact, deform in the shear mode. (It is difficult to
imagine an out-of-phase mode in a real three-dimensional composite.) Once some defor-
mation pattern is postulated, one can consider the compressive loading of a single rep-
resentative fiber which is constrained by the surrounding material, the constraint being
determined by the overall deformation pattern. Because the shear mode appears not to
cause a change in fiber separations, we follow Rosen and take the surrounding material to
resist the fiber deformation only by applying shear stresses to the fiber. Note that these
shear stresses arise within the misaligned bundle due to the deformation of the bundle in
the shear mode. On the other hand, the rest of the composite (outside the misaligned
bundle) may resist the shear deformation of the bundle with normal forces ; the potential
significance of this resistance will be taken up below after presenting the results.

A free-body diagram of an element of the representative fiber in the plane of the shear
mode is shown in Fig. 2. The quantity  represents the average shear stress in the plane that
arises due to the deformation; as indicated, there are equal and opposite shear stresses
acting on the fiber. If the fiber is assumed to be circular with radius g, then, by integrating
around the fiber circumference, the shear stresses communicate a couple to the fiber which
is equal to 4a’r. The applied longitudinal compressive force is denoted by P, M is the
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Fig. 2. Free-body diagram of an element of a micro-buckling fiber.

bending moment in the fiber, ¥ is the transverse shear force, and § is the orientation of the
fiber segment relative to the compression axis. For the analysis of bending, we assume the
fiber is inextensible ; therefore, the deformation of the fiber is described completely by giving
the rotation @ as a function of position along the fiber.

From a simple moment balance, the following equation of equilibrium is obtained

dM . K
~a—§-+1’sm8——4a =0 (1)

where s is arclength along the segment. Since there is no net lateral force (the shearing
resistance is a pure couple), the transverse shear force V is zero everywhere, and the
longitudinal force P is constant along the length. Note that P and V are defined with respect
to fixed axes.

At this point, the constitutive laws must be incorporated. We assume the strains in the
fiber are infinitesimal, even though the deflection is arbitrarily large. Treating the fiber as
an elastica, we take the moment at each point to be proportional to the local curvature;
hence,

do
M= EfIE; 2

where E/ is the fiber modulus and 7 is the polar moment of inertia, which equals na*/2 for
a circular fiber,

It is the constitutive law relating the shear stress 7 to the fiber rotation which is perhaps
the most speculative aspect of micro-buckling models. The problem is that the shear stress
and strain really vary from point to point around the fiber. Here, we adopt the simple
approach originating with Rosen (1965) : fibers rotating in phase with one another cause
some average shear strain in the matrix. For infinitesimal rotations, the shear strain is
clearly proportional to the rotation. Using some simplifying assumptions, Rosen (1965)
gives expressions for the average shear stress and shear strain which are dependent on the
fiber volume fraction and the matrix shear modulus. We believe that no modeling could
ever establish an accurate relation between the average shear stress t and the fiber rotation
for a real three-dimensional composite. As an alternative, we will simply take the shear
stress 7-—for small rotations—to be equal to

‘t=GL9

where G, is interpreted as being roughly equal to the longitudinal elastic shear modulus of
the composite. Since it is the matrix which is directly in contact with the fibers, it may be
that the elastic shear modulus of the matrix is more appropriate to use. The sensitivity to
the value of this modulus will be explored in the results section.

It will also be assumed that once the rotation becomes substantial, the shear stress
communicated to the fiber reaches some limiting maximum value .. For convenience, we
incorporate this assumed response by taking the shear stress to depend on the rotation in
the following manner
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This relation is linear for small 8 (t = G.6), and monotonically approaches a maximum
value 7, as @ becomes large compared with 7./G,. Our purpose in adopting this relation is
to have a smooth, analytically tractible relation which simulates an elastic—perfectly plastic
response. Since we eventually obtain solutions numerically, any relation between shear stress
and fiber rotation could be incorporated into the computations. One sensible alternative, a
truly elastic—perfectly plastic relation (with a jump in slope) was also considered; it was
found to lead to very similar results. In this connection we contend that the errors associated
with the present model of compressive failure will be greater than any differences occasioned
by slight variations in the shear stress—fiber rotation relation. In addition, it is unlikely that
one could experimentally determine more than two parameters, one characteristic of the
elastic response (G,) and one characteristic of the limiting strength (z.). Given the accuracy
of using G, above, it would appear acceptable to identify 7, with the longitudinal shear
strength of the composite, with the matrix shear strength, or with the interfacial shear
strength, whichever is appropriate.

Finally, the imperfection which takes the form of an initial waviness of the fiber bundle
(and of the representative fiber, in particular) is incorporated in a mathematically tractable
way by assuming an initial sinusoidal variation in the fiber slope 6 = 8,, given by:

s
8, = e cos T )

where the imperfection has an amplitude e and a wavelength 2L, a parameter which will
prove to be crucial to the ultimate results. This initial waviness exists with no stress; hence,
the shear stress 7 is actually related to the angle 8—6,, as is the moment M. Since the 6
appearing in P sin 6 is geometric (and not constitutive), it remains unchanged.

By symmetry, one need only consider a quarter wavelength. The governing differential
equation can be derived by combining eqns (1)-(4) to arrive at

-6
0" +k sin @ —aT, tanh T 9= —ecosx &)
!

where the domainis 0 < x < 7/2, ( ) denotes differentiation with respect to the independent
variable x, and the dimensionless variables are defined by:

ns _ PL a—4aZGLL2 .
L’ " rEl T Ed’ VG,

The quantity x is the dimensionless arclength, & is the normalized load, « can be viewed as
representing the stresses associated with elastically shearing the matrix relative to those
associated with bending the fiber, and T is roughly the rotation at which the shearing
resistance starts to go plastic. The boundary conditions are zero moment at x = 0, and zero
slope at x = n/2; hence,

&) =0, 6(n/2)=0. (6a,b)

A simple shooting method was used to solve eqn (5) subject to the boundary conditions
(6), given some fixed value of k. Beginning with 8(xn/2) = 0, a value of 8'(x/2) was guessed
and the differential equation was integrated using a fourth-order Runge-Kutta method to
x = 0. If 8(0) was not zero, the guess for &' (n/2) was adjusted appropriately.

The quantity of interest will be the maximum tensile strain in the bending fiber ; when
this equals the tensile fracture strain of the fiber ¢/, fiber fracture can occur. The maximum
tensile strain in the fiber is the sum of two terms: the bending strain which is arrived at by
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Fig. 3. Definition of parameters describing impertectly aligned fiber bundle.

solving (5), and the compressive strain &y, associated with the longitudinal compressive
load P. Since the compressive failure strain of the composite is on the order of ¢/, the latter
contribution must be included. (Note, however, that the bending contribution is calculated
on the basis of an inextensible elastica.) Since the longitudinal force P acts parallel to the
fiber at the point where the bending is maximum. one can express the second contribution
in terms of k as

Eeomp = _?kL:. (7)

The overall compressive strain at which the fibers fracture is referred to as the fiber-breaking
strain.

Before presenting numerical results, we consider an evaluation of the governing pa-
rameters from readily available composite materials data. Values for E,, a, G, and . are
often quoted ; they allow one to compute «” = x(a’L)" and T, = 7,/G,. Remaining are the
imperfection amplitude ¢ and the imperfection wavelength 2L, the latter clearly having an
upper limit of the specimen length. The imperfection amplitude is certainly not a material
property ; in fact, there are many imperfections in a given composite, and different imper-
fections have different amplitudes. Nevertheless. for an imperfection of a given wavelength,
the amplitude e should be reflective of the average degree of fiber misalignment in the
composite.

To capture a reasonable dependence of ¢ upon L we replace e and introduce the
parameter A. We considered A to be fixed, and we took ¢ and L to be related according to

Recall that e is the maximum initial angle of rotation; as indicated in Fig. 3, A has
dimensions of length. Hence, for a fixed A, the imperfection amplitude is less for longer
wavelength imperfections. This was chosen so as to be in accord with the sense that a
relatively long wavelength imperfection with too large an amplitude e would correspond to
an inordinately large matrix-rich zone next to the misaligned bundle. It seemed that A, or
A/a, is a better measure of the inherent fiber misalignment of the composite as a whole; to
consider various degrees of fiber misalignment. one can consider various values of A/a.

RESULTS

First, we consider some qualitative features of solutions to the governing eqn (5). For
relatively short wavelengths, and other parameters having typical values, the load increases
monotonically with the maximum bending strain §’(n/2). More interesting, however, is the
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character of the solutions for moderate to long wavelengths, as shown in Fig. 4. The load
reaches a local maximum, decreases to a local minimum, after which the load increases
indefinitely with '(z/2). When the load depends on the bending strain in this manner, the
condition for fiber fracture at x = 7/2 was generally found to be reached at a bending strain
which exceeds that corresponding to the load maximum (see Fig. 4). If such is the case,
then the correct failure load may be that corresponding to the local load minimum. In
practice, however, the difference is rather small; results for the fiber-breaking strain pre-
sented below were based on the load which gave precisely the failure strain at x = n/2.

Consider now a comparison between the predictions of the fiber-breaking strain based
on the present theory and the predictions of two approximate approaches that one might
be inclined to use. It was pointed out by Argon (1972) that misaligned fibers and plasticity
in the matrix reduce the micro-buckling load ; using our variables, the compressive strength
he suggested was

[ =z; (8)

One means of arriving at this result was put forth by Steif (1988), who carried out an
analysis of the problem considered here, except with linearized kinematics (sin 0 ~ 6) and
the elastic-perfectly plastic relation

{G,ﬁ 8 < 1./G, (92)
. 0>1/G, (9b)

instead of (3). A version of this analysis, now in terms of the slope 8 instead of the deflection
as was done by Steif (1988), is given in the Appendix.

As the analysis indicates, the matrix responds elastically along the entire fiber if
k < T;(1+a)/(T;+e), at which point matrix plasticity initiates at x = 0; the plasticity
spreads to x = #/2 as the load increases. This load to initiate plasticity is equivalent to
Argon’s compressive strength (8) if T; « e and « » 1. It may also be seen from the analysis
given in the Appendix that the resuiting angle § can be infinite if plasticity has initiated
before k = 1, which is the buckling load when there is no matrix restraint (buckling of an
Euler column). Clearly, this linear analysis is invalid at this level of loading. The conclusion
arrived at by Steif (1988) was that compressive failure coincided with the initiation of matrix
plasticity, after which there would be catastrophic buckling.

A second approximate approach to this problem, which gives results that are quali-
tatively consistent with the behavior illustrated in Fig. 4, is to perform an initial post-buckling
analysis of (5) (see Budiansky, 1974). Considering, first, a perfectly aligned fiber, one finds
that it has a symmetric bifurcation point at k = a+ 1, after which the load decreases rapidly,
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Fig. 4. Load versus end rotation of micro-buckling fiber showing nonlinear response.
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particularly if T, is small compared with [. Hence, with a small degree of misalignment e.
there is a maximum load, k., which is given by

2 l@+n]e
e T3

kmax = (a+l) l—3<§> 4(1:1\)*—-’ . (10)

Thus, the initial post-buckling analysis predicts the local maximum in the load.

To illustrate the potential error of equating compressive failure with either the load to
induce matrix plasticity based on the linearized analysis or the maximum load based on the
initial post-buckling analysis, these estimates are compared with accurate numerical results
in Table 1. (The parameter values are 2" = 0.0123, T, = 0.025, A/a = 1.0, &, = 0.048. which
are appropriate to the glass fiber bundle embedded in Epon 828 considered below.) Note
that L/a = 18 corresponds to an initial misalignment of roughly 3°. The maximum load
based on the initial post-buckling analysis (labeled ‘‘Perturbation Solution’ in Table 1) is in
error because the imperfection is not sufficiently small to justify the underlying perturbation
assumption; it would be correct if the imperfection were extremely small. On the other
hand, the load to induce plasticity over-estimates the fiber-breaking strain for long wave-
lengths and underestimates it for short wavelengths—hardly a reliable means of estimating
compressive failure.

Specific predictions of the model are now compared with data presented by Hahn and
Sohi (1986) on the compressive failure of fiber bundles embedded in epoxy. Performing this
comparison suggests realistic ranges of parameters; it also gives some indication of the
reasonableness of the theory. The experiments of Hahn and Sohi (1986) involved bundles
of four different types of fibers each embedded in two different epoxies. Their method of
embedding a bundle in a block of epoxy allows the final failure state of the bundle to be
preserved, because the surrounding epoxy does not fail at the failure strain of the bundle.
This permitted them to assess the lengths of the kinked segments, as well as the failure
strain, The lengths of the kinked segments would presumably be related to the kink band
width in a real composite. They found that the lengths of the kinked segments varied from
one combination to another, but were roughly within a range of 5 to 13 times the fiber
diameter.

Hahn and Sohi (1986) provided values for the fiber moduli and failure strains, and the
epoxy moduli and ultimate strengths. Thus, the quantities a’, T, and &, may be calculated.
(It is difficult to say what the longitudinal shear properties of the bundle itself is, since the
fiber fraction is not well defined; hence, a” and T, were defined in terms of the shear
properties of the matrix.) Initially, a fiber offset of one fiber radius (A = a) was assumed,
and the fiber-breaking strain ¢, was computed for a range of lengths L/a. Recalling that the
wavelength is 2L, one can see that the length of a kinked segment (spanning from one fiber
break to the next, from a peak to the next trough) would be L. This, together with the
experimentally observed segment lengths, dictated the range that was chosen for L/a. The
fiber-breaking strains computed by the theory developed above, as well as the observed
bundle failure strains, are presented in Table 2.

According to the theory just presented, the fiber-breaking strain depends strongly on
the wavelength of the imperfection. In fact, if a constant value of e were to be assumed,
instead of A, the decrease in ¢, with L/a would be even sharper. Remarkably, however, the
wavelengths at which the theoretical fiber-breaking strains agree with the observed bundle

Table 1. Comparison of numerical solution for k at failure with approximate methods

Lia 8.0 10.0 12.0 14.0 18.0 22.0 30.0 40.0 50.0
Numerical solution 0.767 0.863  0.952 1.035 1.186 1.323 1.574 1879 221
Linearized solution 0298 0446 0.640 0.884 1.547 2467 5173 10.34 17.639

Perturbation solution —2945 —3.255 —3.569 —3.871 -—-4394 —4.755 —4.841 -3.535 0476
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Table 2. Theoretical fiber breaking strains ¢, for various embedded bundle combinations

Theoretical failure strain

Lja
Fiber Matrix 8.0 10.0 12.0 14.0 18.0 Experimental
E-Glass Epon 828  0.059 0.043 0.033 0.026 0.018 0.039
E-Glass Epon 815  0.056 0.040 0.030 0.024 0.016 0.021
Graphite (T700) Epon 828  0.047 0.033 0.026 0.020 0.014 0.024
Graphite (T700) Epon 815  0.045 0.032 0.024 0.019 0.013 0.020
Graphite (T300) Epon 828  0.044 0.032 0.025 0.020 0.014 0.023
Graphite (T300) Epon 815  0.043 0.030 0.023 0.018 0.013 0.019

failure strains are roughly within the range of observed kink band widths. This suggests
that the breaking of the fibers is the critical step in the formation of the kink band. Further
evidence of this is presented in Part II, in which the actual formation of the kink band—
with fiber breaks already present—is considered.

The dependence of the fiber-breaking strain on the parameters A, ¢, & and T, is
shown in Figs 5 through 8, respectively. The dependence on A is significant, particularly for
smaller wavelengths. However, the sensitivity may be somewhat less than more approximate
models have suggested. According to Argon’s failure prediction (8), which can also be
arrived at by a linear analysis of the present problem, the compressive strength is inversely
proportional to the imperfection. On the other hand, if one considers the variation with A,
for constant L/a, the sensitivity is seen to be less, sometimes substantially less.

As shown in Fig. 6, the dependence of the fiber-breaking strain on the fiber failure
strain ¢, is very slight, particularly for long wavelengths. Perhaps this is not surprising: the
process of bowing the fiber is highly nonlinear. For a long fiber, once the load is high
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Fig. 5. Fiber breaking strain for various imperfection magnitudes A/z (2’ = 0.0132, T, = 0.025,
g, = 0.0183).
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Fig. 6. Fiber breaking strain for various fiber ductilities ¢, (2’ = 0.0123, T, = 0.025, A/a = 1.0).
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Fig. 7. Fiber breaking strain for various values of normalized matrix shear modulus 2’ (A/a = 1.0,
T, =0.025 ¢, =0.0183).

enough for the critical strain to be reached, much higher bending strains can be reached
without much increase in load. This is supported by Fig. 4, which indicates the maximum
bending strain as a function of the load k. Clearly, a significant range of bending strains
can be achieved with virtually no change in the load. It should be also noted that Hahn
and Sohi (1986) found that all the fiber bundles (except the P75 graphite fibers, which
suffered shear failure themselves) failed essentially at a strain of 2%, except for the glass
fibers in Epon 828. Hence, even if the Berg and Salama (1973) tensile strain criterion has
to be satisfied, it is relatively insensitive to the actual value of the critical strain.

The dependence on o is also rather modest. In fact, to see how small its effect is,
consider the lowest curve in Fig. 7, which corresponds to o = 0: this is tantamount to no
matrix support. This is quite at odds with Rosen’s (1965) prediction that the micro-buckling
load scales with the matrix shear modulus. One can explain this by recalling that the classical
micro-buckling result (see, for example, Greszczuk, 1982) has an additional term that
depends on E (a/L)*. This bending contribution is usually neglected because the wavelength
was generally assumed to be on the order of the specimen length. When the wavelength is
on the order of the observed kink widths, however, the bending contribution becomes
dominant. It should be noted, therefore, that letting the initial shearing resistance in eqn
(2) be equal to the longitudinal shear modulus G is acceptable, in that small variations in
this parameter would have little effect.

The dependence on T is shown in Fig. 8 for a range in T,. It was found by Piggot
and Harris (1980) that the ratio of an epoxy’s strength to its modulus is generally 1/50 to
1/40: thus, the range of values chosen for T,. Lower values of T, are possible, however,
and can be detrimental. They would arise if the shear stress transmitted to the fibers were
limited not by the matrix shear strength but by the interfacial strength, which can be rather
low. The post-buckling analysis performed earlier gives some indication of the potential

£, 0.04 1

0.031

0.02 ¥ v T T - r

Fig. 8. Fiber breaking strain for various values of normalized matrix shear strength 7, (2" = 0.0132,
Ala = 1.0. ¢, = 0.0183).
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decrease in the compressive strength which is occasioned by low values of T,. However,
the effect is not nearly as strong as one might expect, because of the dominance of the
bending contribution, as mentioned above.

The model formulated here appears to be the first model of kinking or micro-buckling
that connects the observed failure strain with the observed kink band width L. Nevertheless,
the question remains : what determines the kink band width? For instance, why doesn’t the
composite fail at a lower strain with a wider kink band? One possible explanation is now
offered.

Recall that within the misaligned bundle which ultimately forms the kink, the fibers
are taken to deform together in the shear mode. It is this shear mode which gives a
diminishing failure strain with increasing wavelength. (Rosen (1965) found this too, though
his micro-buckling loads were much higher than those found here.) However, the misaligned
bundle itself is surrounded by presumably well aligned material which acts to resist the
deformation of the misaligned bundle. This constraint on the bundle as a whole is the same
constraint that acts on a single fiber which is part of Rosen’s extension mode, with the
straight fiber adjacent to the misaligned bundle constituting the symmetry plane (see Fig.
9).

Rosen’s (1965) early calculation of the so-called extensional mode is still appropriate,
except that it is the misaligned bundle that is buckling not an individual fiber. This mode
presumes that surrounding material exerts a normal restoring force on the deflecting fiber
which is proportional to the deflection; i.e., a beam on a Winkler foundation. The first
buckling load of a beam so restrained is a non-monotonic function of the beam length (or
the wavelength of the buckling mode). The buckling load has a minimum value for some
finite value of the wavelength. This optimum wavelength 2L, is given by

Er|v
Lopl = n|:E_7:| (11)

where ET is the bending resistance of the fiber bundle, and E, the modulus of the foundation,
has a value somewhere between the matrix modulus and the composite transverse modulus.

In evaluating this expression, one must be careful in assigning values to EI. Recall that
this bundle is itself deforming in the shear mode. By the time the bundle reaches the state
at which the fibers break, the shear restraint of the matrix within the bundle is extremely
small. In fact, the fibers in the bundle are nearly decoupled from one another. If this is the
case, then the EI should not be associated with perfect composite material which has the
size and shape of the bundle. Rather, the fibers in the bundle each act as independent beams,
which means that

n
EI=5NEfa4 (12)

for a bundle of N fibers. One can then substitute this into (11) to obtain the following
expression for the optimum wavelength

s ——r
== —— -

— et

Fig. 9. Schematic of normal constraint provided by surrounding aligned material,
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7 E 14
Lup[=ﬂa(§z\'§} . (13)
T

For a relatively wide range in the choices of parameters N, E, and E, one finds that the
optimum wavelength is on the order of 10 to 20 times the fiber radius. In fact, Hahn and
Sohi showed that the lengths of the kinked segments of their fiber bundles do, in fact,
increase approximately linearly with (E-/E;)' *.

It must be noted that a linear relation between a wavelength and (Ef/E;)' ¢ has been
found by others (see, for example, Lanir and Fung, 1972). In fact, any analysis of elastic
micro-buckling with normal matrix constraint—as in the extension mode—-would predict
this result. However, those analyses predict micro-buckling strains that are far above the
observed values. We are suggesting here that the role played by the normal constraint is
simply to determine the feasible range of imperfection wavelengths. Once the possible range
of wavelength is established, then the shear mode analysis of the present theory, with the
limited matrix shear response, the finite deflections of the fiber, and the breaking of the
fibers at the points of maximum tensile strain, should apply.

Though the fiber breaking strain appeared to be insensitive to the matrix modulus
(considering a’), some experiments indicate that it does affect the compressive strength. The
following explanation for this dependence is suggested. Lower values of matrix modulus
lead to wider kinks. Even though the kink width depends weakly on E,, (L/a ~ (E;/E,)"",
assuming E; scales with E,,), the fiber breaking strain is very sensitive to the kink width.
This explanation could be tested by carefully noting the kink widths for a set of composites
with progressively stiffer matrices.

CONCLUSIONS

A theory has been proposed for calculating the initiation of fiber breaks that accompany
kinking. It is based on an initially misaligned fiber bundle that is capable of finite deflections,
and on elastic—plastic shear resistance of the matrix. The criterion for fiber breakage is that
the maximum tensile strain in the fibers is equal to the fiber failure strain. The theoretical
fiber breaking strains depend most sensitively on the kink width ; remarkably, though, they
are found to correspond reasonably well with observed compressive failure strains when the
kinks are assumed to have the observed widths. It is suggested that the transverse constraint
of material surrounding the misaligned bundle plays a role in determining the kink width
and, thereby, the fiber failure strain. The reasonable agreement between the fiber breaking
strain and the compressive strength suggests that the breaking of the fibers is the limiting
step in forming the kink. Further exploration of this point is found in Part II in which the
actual formation of the kink band is studied.
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APPENDIX

In this Appendix the solution to the linearized equation with elastic-perfectly plastic matrix response is
outlined. Again, it is assumed that there is a sinusoidal imperfection. If the load & is less than T(1 +2)/(T,+¢),
then the matrix responds elastically all along its length, and the solution is

_ a1
T atl-k

£COoS X. (Al

Once k exceeds this value the matrix responds plastically along 0 < x < x, and elastically along x rex<n2
At the point x,, the shear strain § is precisely equal to the value needed to initiate plasticity; that is,

8(x;) = Bolx, )+ T. (A2)
The solution is given by
9=§%{T;{l—%}—%cosx,}+ T—i—kcosx+g%’—' O<x<x;) (A3a)
sinh Ax—tanh A cos Ax
0= ,121: [Tj— & cos x,]+ 2t o (x, <x< f) (A3b)
sinhlx,—tanh-fcos).x, atl-k atl-k 2

when 4 = /a—k.
) Fipally, one must impose the condition that the moment is continuous at x = x;. This implies that the
derivative 8'(x,) is continuous, from which x, may be determined.



